Coverage Discounting: Improved Testbench Qualification by Combining Mutation Analysis with Functional Coverage

Nicole Lesperance, Peter Lisherness, Tim Cheng, University of California, Santa Barbara

1. Problem
 Functional coverage evaluates activation, ignoring propagation and detection

2. An Existing Solution
 Mutation Testing
 Synthetic fault insertion
 ✔ Evaluates propagation
 ✔ Evaluates checker
 ✔ Minimal infrastructure
 ✗ Hard to analyze
 ✗ Long runtime

 Example of a Weak Checker Inhibiting Debug Effort
 Performance bugs can be a blindspot of functional checkers. Suppose burst mode is disabled on a bus controller – does the testbench notice?

3. Coverage Discounting – Our Solution
 Coverage Discounting
 ✔ Evaluates propagation
 ✔ Evaluates checker
 ✔ Minimal infrastructure
 ✗ No special analysis
 ✔ Manageable runtime

 Main Idea
 Use mutation results to revise functional coverage score

4. Discounting Flow
 Discounting = Change in Coverage + Undetected Mutants

5. Experimental Results
 Concise, Functional Results
 Compare to mutation analysis:
 - 1588 Mutants:
 7 not activated
 106 not propagated
 33 not detected
 - Total 146 mutants demand attention
 - 846 Coverpoints:
 4 uncovered
 3 discounted
 - All discounted relate to specific unchecked functions:
 (Loopback, timeout interrupt identification register)

 Identifies Checker Bugs
 OpenRISC SoC

 Confidence Metric (DECO Score)
 ➢ Point confidence: # of times a coverpoint is suppressed
 ➢ DECO(n): percentage of points with point confidence > n

 Q: Is the coverpoint set adequately challenged by the mutants?
 A: Yes, if DECO score is sufficient

 Q: When can we stop simulating?
 A: When DECO score exceeds a predetermined threshold or when a point is discounted

 Efficient Fault/Test Ordering
 Q: What is the optimal mutant simulation ordering for coverage discounting?
 1. Test Selection: Choose test covering the most low confidence points
 2. Mutant Selection: Select mutant activated by the fewest tests

6. Acknowledgment
 This work was supported by the Semiconductor Research Corporation under GRC CADTS Verification.